Fike Analytical Technologies, L.L.C. ~ 9800 Reese Rd. ~ Clarkston, MI 48348 ~ 248-241-6713

AirSurvey and VOC Example Reports

Index

	Page
Index	1
AirSurvey Example Report	2
List of Compounds (the 500+ compounds routinely quantified)	3-4
IAQ Summary Example Report (Total VOCs and Total Mold VOCs)	5-6
TVOC Interpretation Guidelines	7
TMVOC Interpretation	8
Indices:	
SPFScan Example Report	9
SmokeScan Example Report	10
FireScan Example Report	11
Aged Feline Urine Example Report	12
How Do I Read an AirSurvey Report	13-16
Differences Between Canisters and Thermal Desorption Tubes	17
TracScan Example Report	18
Services Available and Price List	19

This is an example AirSurvey report. Most reports are 3-4 pages long. This example is abbreviated.

Analytical Report

Analytical Technologies, L.L.C.

Fike

Client: ABC Company Project: Processing Site Location: Anywhere, USA Sampled By: J. Cammel C.O.C. No.: 23001 Order Date: 02/26/2018 Report Date: 02/28/2018

NIOSH 2549 AirSurvey Analysis All results are reported in ng/L

A scan was made for all compounds contained in the attached AirSurvey List of Compounds Quantitative List and Semiquantitative List. All compounds detected are listed below:

	Page	1 of 1	
Client Sample ID: Proce	0		Detection Limits
Laboratory ID: 2300	1 - 1		Quantitative List: 0.3 ng/L
Date Sampled: 02/2 Date Analyzed: 02/2	5/2018 7 Volume:	39. L	Semiquantitative List: 2 ng/L
Compound	Calculated Result	Actual Result	Comments
Total VOC	s	1,400	Total volatile organic compounds calculated based on internal standard ratio; does not include C1, C2, or methanol
Toluen	e	66	Methyl benzene ppb 17 MW 92 CAS 108-88-3
m,p-Xylen	e	28	m,p-Dimethylbenzene; CAS number is for the para isomer ppb 6.4 MW 106 CAS 106-42-3
o-Xylen	e	11	o-Dimethylbenzene ppb 2.5 MW 106 CAS 95-47-6
Diethyldisulfid	e 0.04	0.02-0.08	During AirSurvey analysis, most of the C1-C3 mercaptans are converted to the disulfides. The presence of a disulfide is usually indicative of the presence of the corresponding mercaptans in the original sample. ppb 0.008 MW 122 CAS 110-81-0
Hexana	d 410	200-820	Hexaldehyde; caproic aldehyde ppb 100 MW 100 CAS 66-25-1
a-Pinen	e 390	190-780	2-Pinene ppb 70 MW 136 CAS 80-56-8
C10-C12 Hydrocarbo	n 79	39-160	27.3 min; contains oxygen; appears to be a substituted primary alcohol

These results have been reviewed and approved by the Technical Director

Fike Analytical Technologies, L.L.C. 9800 Reese Rd. Clarkston, MI 48348 248-241-6713

Randall S. Fike, Ph.D.

Page 2

1

Fike Analytical Technologies, L.L.C. ~ 9800 Reese Rd. ~ Clarkston, MI 48348 ~ 248-241-6713

NIOSH 2549 / AirSurvey Analysis List of Compounds

Quantitative List

Dibromomethane

Dichlorodifluoromethane

1,2-Dibromoethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1.4-Dichlorobenzene

1,1-Dichloroethane

1.2-Dichloroethane

1,1-Dichloroethene

1,2-Dichloropropane

1.3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

1,3-Dichloropropene (cis)

1,2-Dichloroethene (cis)

1,2-Dichloroethene (trans)

Benzene Bromobenzene

- Bromochloromethane Bromodichloromethane Bromoform
- n-Butylbenzene sec-Butylbenzene tert-Butylbenzene
- Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane Chloroform
 - 2-Chlorotoluene 4-Chlorotoluene
- 1,2-Dibromo-3-chloropropane

Acetealdehyde Acetone (2-Propanone) Acetonitrile Acetophenone Acrolein Acrylonitrile Allyl alcohol (2-Propenol) Allyl chloride Anisaldehyde Benzaldehyde Benzenethiol 2,3-Benzofuran Benzoic acid Benzonitrile

- Benzophenone Benzothiazole Benzylalcohol Benzylbenzoate Benzylchloride Benzylpropionate Biphenyl 1-Borneol
- Bornyl acetate Bromobenzene
- 2-Bromobutane 4-Bromo-1-butene Bromochloroacetonitrile
- 2-Bromochlorobenzene 3-Bromochlorobenzene
- 4-Bromochlorobenzene
- 2-Bromo-1-chloropropane Bromochlorofluoro Methane Bromodichlorobenzene Bromoethene (Vinyl Bromide)

- 1-Bromopropane 2-Bromopropane 1-Buten-3-yne
- Butadiene
- Butanal
- 1-Butanol
- 2-Butanol
- t-Butanol
- 2-Butanone (MEK)
- 2-Butenal (trans)
- 1-Butoxy-2-propanol
- 2-Butoxy 2 propar
- 2-Butoxyethylacetate
- 2-n-Butylacrolein
- n-Butylbenzene
- sec-Butylbenzene
- tert-Butylbenzene
- 2,4-(bis-tert Butyl) phenol m-tert-Butyl phenol
- n-Butylacetate
- Butylcaprylate
- Butylcyclohexane 4-tert-Butylcyclohexylacetate
- di-n-Butylether
- tert-Butylmercaptan
- Butylmethacrylate
- di-t-Butylether sec-Butylethylbenzene
- 2-n-Butylfuran
- 1-Butylhexylbenzene
- sec-Butylmercaptan
 - C 3 (Propane)
 - C 4 (Butane)
 - C 5 (Pentane)

- 1,3-Dichloropropene (trans)
- 1,4-Dioxane
- Ethylbenzene Hexachlorobutadiene
- Hexachloroethane
- Isopropylbenzene p-Isopropyltoluene
- Methylene Chloride
- 2-Methylnaphthalene
- MIBK
- MTBE
- Naphthalene
- n-Propylbenzene
- Styrene
- 1,1,2,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane

Semiquantitative List

C 6 (Hexane)

C 8 (Octane)

C 9 (Nonane)

C 10 (Decane)

C 11 (Undecane)

C 12 (Dodecane)

C 13 (Tridecane)

C 14 (Tetradecane)

C 15 (Pentadecane)

C 16 (Hexadecane)

Carbon disulfide

Caryophyllene

Chloroaniline

Chloroethane

Carbontetrabromide

1-Chloro-1,1-difluoroethane

1-Chloro-1-fluoroethene

1-Chloro-2-propanol

cis1-Chloro-1-propene

p-Chlorobenzenethiol

2-Chloroethylvinylether

trans1-Chloro-1-propene

p-Chlorophenol

2-Chloropropene

3-Chloro-2-methyl-1-propene

Chlorodifluoromethane

Camphene

Camphor

Iso-Caprolactone

3-Carene

Carvone

a-Cedrene

Cedrol

C 7 (Heptane)

3-Chloropropene

- 2-Chlorotoluene
 - 4-Chlorotoluene
 - 2-Chloro-3,3,3-trifluoropropene
 - Chlorotrifluoroethene 1-Chloro-4-trifluoro-
- -methylbenzene 1,4-Cineole
- Cinnamaldehyde
- Z-Citral
- Citronellol
- Citronellyl acetate
- Citronelly formate
- α-Copaene
- o-Cresol
- m-Cresol p-Cresol
- Crotonaldehyde
- a-Cubebene
- Cyclohexane Cyclohexanol
- Cyclohexanone Cyclohexene
- 4-Cyclohexylbenzenamine
- n-Cyclohexylcyclohexanamine Cyclopentane Cyclopentanone
- Cyclopentene Decahydronaphthalene Decanal
- Decanoic acid 2-Decanone Diallyl disulfide Diallyl sulfide

Diallyl tetrasulfide

C5-C15 Straight-Chain HCs

Tetrachloroethene

Toluene

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene 1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

m & p-Xylene

o-Xylene

Vinyl Chloride

Trichloroethene

Trichlorofluoromethane

1,1,2-Trichloro-1,2,2-trifluoroethane

- Diallyl trisulfide
- 1,2-Dibromo-3-chloropropane Dibromomethane
- 2,5-Dibromotoluene
- 1,1-Dichloro-1-fluoroethane
- 1,3-Dicholoropropane
- 2,2-Dichloropropane
- 1,1-Dichloropropene
- 2,3-Dichloro-1-propene
- 1,4-Dichloro-2-butene (cis) 1,4-Dichloro-2-butene (trans)
- 1,1-Dichloro-2-ethenyl-
 - -cyclopropane Dichlorofluoromethane Dichlorotetrafluoroethane (CFC-114)
 - Dicyclohexylamine 1-Ethoxy-2-(2-
- ethoxyethoxy)ethane N,N-Diethylacetamide Diethyl disulfide Diethylbenzene # Diethylether
- N,N-Diethylformamide Diethylphthalate
- 1,1-Difluoroethane 2,5-Dihydrofuran

Indene

2,3-Dihydro-4-methyl-1H-

2,3-Dihydro-5-methyl-1H-

Diisopropyladipate

Diisopropyldisulfide

Diisopropylether

Page 4

3-Phenyl-2-propenal

Pinane

Piperidine

Piperonal

Propanal

p-Propenylanisole

Propionitrile

n-Propvlacetate

n-Propylbenzene

n-Propylamine

2-Propylfuran

Pulegone

Pyrazine

Quinoline

Sabinene

Sulfolane

a-Terpinene

y-Terpinene

4-Terpineol

Terpinolene

Texanol-A

Texanol-B

Thiophene

Thiophenol

Tributylamine

1,1,1-Trichloro-2-propene

1,2,3-Trichloropropane

Tricyclene

Triethylamine

1,3,5-Triisopropylbenzene

1,2,3-Trimethylbenzene

2,2,4-Trimethylpentane

1,2,4-Trithiolane

Triethylbenzene #

3,3,5-Trimethylcyclohexanone

Trimethylpyrazine

Trimethylsilane

Trimethylsilanol

Vinyl acetate

isomers of

2,3-Trimethylenenorbornane

Trimethylethylbenzene #

Valeraldehyde (Pentanal)

Trimethylcyclohexane

Trichlorofluoromethane

1,1,2-Trichloro-1,2,2-trifluroethane

Trichlorobenzene #

Thujone

Triacetin

α-Terpinyl acetate

Tetrahydrofuran

Tetrahydrothiophene

Rose Oxide

Sevoflurane

Pyrrole

2-Propenylbenzene

2-Propenylhexanoate

Propylcyclohexane

Prenol

n-Propanol

 α/β -Pinene

- 1,1-Dimethoxy-2-butene
- 1,1-Dimethoxyheptane
- 1,1-Dimethoxyhexane
- Dimethoxymethane
- 1,1-Dimethoxynonane
- 1,1-Dimethoxyoctane
- 1,2-Dimethoxypropane
- N,N-Dimethyl acetamide Dimethyladipate Dimethylamine
- Dimethylaminoacetonitrile N,N-Dimethyl benzenamine Dimethyl disulfide
- 1,3-bis(1,1-Dimethylethyl)--benzene
- **Dimethyl ether**
- 2,5-Dimethylhexane
- Dimethylphthalate 2,5-Dimethylpyrazine **Dimethyl sulfide** Dimethyl trisulfide
- 2,2-Dimethyl-1-pentanol
- N,N-Dimethylcyclohexanamine 1,1-Dimethylcyclohexane Dimethylester of

pentanedioic acid

(Diisobutyl Ketone)

1.1-Dimethylethoxybenzene

2,6-Dimethyl-4-heptanone

2,4-Dimethylfuran

2,5-Dimethylfuran

2,3-Dimethylphenol

2,5-Dimethylphenol

1,4-Dimethylpiperazine

p-alpha Dimethylstyrene

Dimethylsuccinate

Dimethylsulfoxide

Di-n-butyldisulfide

Diphenylamine

Diphenylsulfide

Epichlorohydrin

1-Dodecanol (Lauryl alcohol)

2-(2-ethoxyethoxy)Ethanol

2-(2-butoxyethoxy)Ethanol

4-Ethenyl cyclohexene

3-Ethenyl-pyridine

Ethylacetate

Ethyl butyrate

2-Ethyl-1-hexanol

2-Ethyl-1-hexene

Ethylacetate

Ethylacrylate

Ethylbenzoate

248-241-6713 randall@reagan.com

2-(2-methoxyethoxy)Ethanol

1-Ethenyl-3-methylbenzene

Ethoxymethylbenzene

Ethyl 2-methylbutyrate

Ethyl 3-methylbutyrate

2-Ethyl-4-methyl-1,3- dioxolane

Fike Analytical Technologies, L.L.C.

Ethyl-tert-butylether (ETBE)

Diphenylether

Di-n-propyldisulfide

2,5-Dimethylpyrazine

1.4-Dioxane

1-Dodecene

Ethanol

- 1-Heptanol 3-Heptanone
 - 2-Heptanone
 - . Heptylbenzene
 - Hexachloroethane

1112333 Heptafluoropropane

Ethylcyclohexane

Ethylhexanoate

2-Ethylhexanoic acid

Ethylmethylacrylate

o-Ethylmethylbenzene

Ethylmethylphenylglycidate

2-Ethylhexylacetate

m,p-Ethylmethylbenzene

Eucalyptol

Eugenol

Fenchone

3-Furaldehyde

2-Furaldehyde

Geraniol

Heptanal

2-Furanmethanol

Furan

Fluorobenzene

D-Fenchol

2-Ethylhexanal

Ethylcyclopentane

Ethyl-3-ethoxypropionate

- 1,1,1,3,3,3-Hexafluoro-2- propanol Hexanal
 - Hexanoic acid
 - 1-Hexanol
 - 1-Hexene
 - 2-Hexene 3-Hexene
 - n-Hexylacetate
 - 2-Hexyloxyethanol
 - 4-Hydroxy-4-methyl-2-pentanone Indane Indene Indole Iodomethane trans-beta-lonone Isoamylbenzoate Isobornylacetate Isobutanal Isobutane Isobutanol (2-Methyl-1--propanol) Isobutylacetate Isobutylketone Isofluorane a-Isomethyl ionone Isononyl acetate Isoprenol
 - Isopropanol p-Isopropylbenzaldehyde Isopropylbenzene Isopropylmercaptan
 - Isopropylphenylketone 1-Isopulegol
 - Limonene Linalool Linalool propionate I ilial Linalyl acetate

Rev 6 For compounds not on this list or for more information, call Dr. Fike at:

- Linalyl propanoate Longifolene Menthol Menthone Mesityl methyl ketone 2-(1-Methoxy)propylacetate 2-Methoxy-2-methylbutane
 - 2-Methoxy-1-propanol
- 1-Methoxy-2-propanol
- 1-Methoxy-4-(2-propenyl)--benzene Methoxybenzene
- 1-Methoxycyclohexene
- N-Methoxymethaneamine
- 1-Methoxy-4-methylbenzene
- 2-Methoxynaphthalene
- 2-Methoxyphenol
 - 1-Methoxy-2-propanone Methoxytrimethylsilane Menthyl acetate Methenamine Methyl allyl disulfide
- a-Methylbenzene
- 2-Methyl benzofuran
- N-Methyl-1-butanamine
- 1-Methyl decahydro-
- -naphthalene
- 2-Methyl decahydro-
- -naphthalene Methyldodecanoate Methyl isopropyl ketone Methyl salicylate
- Methyl styrene
- Methyl thiirane
- 3-Methyl-1H-indole (Skatole) 2-Methyl-1,3,5-hexatriene
- 2-Methyl-1,3-dioxolane
- 2-Methyl-1-propene
- 2-Methyl-2,4-pentanediol
- 4-Methyl-2-pentanone (MIBK)
- 1-Methyl-2-pyrrolidinone
- 2-Methyl-3-buten-2-ol
- Methyl-3-methoxypropionate 4-Methyl-3-penten-2-one
- 6-Methyl-5-hepten-2-one Methylacetate Methylacrylate Methacrylonitrile
- N-Methylaniline
- Methylbenzoate
- 2-Methylbutane
- 2-Methylbutanal
- 3-Methyl-1-butylacetate
- 3-Methylbutanal Methylbutylbenzene Methylcyclohexane Methylcyclopentane
- 1-Methylcyclopentene
- bis-(1-Methylethyl) benzene
- 1-Methylethylacetate
- α-Methylcinnamaldehyde Methyldihydrojasmonate Methylethylbenzene Methylethyldisulfide Methylethylsulfide

5-Methyl-2-furaldehyde

Fike

Analytical Technologies, L.L.C.

- Methylisothiocyanate Methylmethacrylate 2-Methylmethylpropionate 1-Methylnaphthalene 2-Methylnaphthalene 4-Methyl-2-pentanol Methyl-n-pentyldisulfide 2-Methyl-2-propanamine 2-Methyl-1-propene
- 2-Methyl-2-propanol 1-Methylpropylacetate
- 2-Methylpropylacetate Methyl-n-propyldisulfide Methyl-n-propylsulfide
- 3-Methyloctane 2-Methylpyridine
- Methylpyrazine

2-Methvlfuran

Diethyl ether

2-Methylheptane

3-Methylheptane

4-Methylheptane

2-Methylhexane

3-Methylhexane

5-Methyl-3-heptanone

2-Methyl-3-hexanone

- N-Methylpyrrole
- a-Methylstyrene
- 2-(Methylthio)-butane Methylthiophene
- 1-(Methylthio)-1-propene 1,1,1,2-Tetrachloroethane MTBE (Methyl tert butyl ether)
- 4-Methylmorpholine Myrcene Nervl acetate Nicotine
 - Nitromethane
- Nonanal 1-Nonanol
- 2-Nonanone
- 2-Nonenal (trans) Octamethylcyclotetrasiloxane Octanal
- Octanoic acid
- Oxazole Pentachloroethane
- 1.3-Pentadiene
- Pentafluoroethane 11133-Pentafluoropropane Pentamethylheptane
 - Pentanoic acid 1-Pentanol
 - 2-Pentanone
 - 1-Pentylacetate
 - 2-Pentylacetate
- 2-Pentylfuran
- α-Phellandrene
- Phenol
- 2-Phenoxyethylacrylate Phenylacetaldehyde 4-Phenylcyclohexene (4-PCH)
- 1-Phenylethylacetate
- Phenylethyne
- N-Phenylmethacrylamide
- Phenylmethylsulfide
- 1-Phenyl-1,2-propanedione

9800 Reese

Clarkston, MI 48348

Fike

Analytical	Technologies, L.L.C.
------------	----------------------

Indoor Air Quality Summary

Client: ABC Company Project: Processing Site Location: Anywhere, USA Sampled By: J. Cammel Submitter ID: Process 1

 Sample Number:
 23001 - 1

 Date Sampled:
 02/25/2018

 Order Date:
 02/26/2018

 Date Analyzed:
 04/13

 Date Reported:
 02/28/2018

Page 1 of 2

IAQ Summary

Total VOCs (TVOC), ng/L: 1,600

Mold VOCs (TMVOC), ng/L: 15

Sample Volume (L): 39 Notes:

Understanding the Results:

TVOC (Total Volatile Organic Compounds)

No federal or state agency has specified a specific limit for Total Volatile Organic Compounds (TVOCs) in indoor air; however, several members of the European Union and the U. S. Green Building Council (USGBC) have recommended 500 ng/L as the limit. Note that if all of the TVOC is the result only one or a small number of components, a hazardous condition may still exist.

In homes, usually, TVOC levels below 200 ng/L indicate that the Indoor Air Quality (IAQ) is "Ideal," TVOC levels between 200 and 300 ng/L indicate that the IAQ is "Good," TVOC levels between 300 and 400 ng/L indicate that the IAQ is "Acceptable," and TVOC levels between 400 and 500 ng/L indicate that the IAQ is "Marginal." TVOC levels above 500 ng/L indicate that a problem may exist and it should be addressed.

In commercial buildings, TVOC levels below 200 ng/L indicate that the IAQ is "Ideal," TVOC levels between 200 and 350 ng/L indicate that the IAQ is "Good," TVOC levels between 350 and 500 ng/L indicate that the IAQ is "Acceptable," and TVOC levels between 500 and 700 ng/L indicate that the IAQ is "Marginal." TVOC levels above 700 ng/L indicate that a problem may exist and it should be addressed.

In production and manufacturing facilities, TVOC levels below 500 ng/L indicate that the IAQ is "Ideal," TVOC levels between 500 and 700 ng/L indicate that the IAQ is "Good," TVOC levels between 700 and 1,000 ng/L indicate that the IAQ is "Acceptable," and TVOC levels between 1,000 and 1,500 ng/L indicate that the IAQ is "Marginal." TVOC levels above 1500 ng/L indicate that a problem may exist and it should be addressed.

In all cases, exposure effects are possible with TVOC levels between 1,500 and 3,000 and exposure effects are probable at TVOC levels above 3,000 ng/L. Exposure effects may include eye and respiratory irritation, headaches, drowsiness, nausea, general malaise, etc.

Based on what the individual compounds are that make up the TVOC, it is possible to suggest actions which will lower the level into an acceptable range. Contact the person who took this sample for more information.

Page 6

Sample Number: 23001 - 1

Fike Analytical Technologies, L.L.C.

Indoor Air Quality Summary

Understanding the Results:

Page 2 of 2

TMVOC (Total Mold Volatile Organic Compounds)

This is an assessment of the quantity of actively growing mold in the building. This test will not detect inactive or dormant mold. Like TVOC, no federal or state agency has specified specific limits for TMVOC. Typically, if there is no plumbing leak or water intrusion into the building, there will not be a mold problem. If the presence of mold is indicated, the first step in fixing the problem is to find and eliminate the water source. Typical places to check are roof leaks, plumbing leaks, leaks under the windows, leaking appliances, and sweating fixtures.

For Normal Individuals:

TMVOC levels below 6 ng/L typically indicate that there is a minimal amount of actively growing mold present. Levels between 6 and 20 ng/L indicate a low level of mold is present and people sensitive to mold may be affected. Levels between 20 and 60 ng/L indicate that actively growing mold is present at a moderate level and building occupants will probably be affected. Levels above 60 ng/L indicate that a high level of mold is present and most building occupants will be affected.

For Hypersensitive Individuals:

TMVOC levels below 3 ng/L indicate very reduced levels of actively growing mold may be present which will typically not affect hypersensitive individuals. Levels between 3 and 10 ng/L indicate that actively growing mold is present that may affect hypersensitive individuals. Levels between 10 and 20 ng/L indicate that actively growing mold is present; and significant allergic reactions for hypersensitive individuals are possible. Levels above 20 ng/L indicate that significant, active mold growth is present that will probably affect most hypersensitive individuals.

The TMVOC ranges cited above and their interpretation are not absolute as many conditions affect the quantity of MVOCs detected. Therefore, it must be understood that these results are not definitive but are meant as a general guideline only.

Caution should always be exercised when removing mold and it is recommended that a professional mold remediator be consulted before any removal is initiated.

Fike Analytical Technologies, L.L.C. (Fike), is not a laboratory but serves as a clearinghouse for data submitted by laboratories chosen by the submitter. The results contained in this report are dependent upon a number of factors over which Fike has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, or the values reported by the submitter's laboratory. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Fike, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

Total Volatile Organic Compounds (TVOCs) in Air

Home ⁽¹⁾	Office ⁽¹⁾	
TVOC Level ng/L (µg/m ³)	TVOC Level ng/L (µg/m ³)	Meaning
Less than 200	Less than 200	Ideal
200-300	200-350	Good
300-400	350-500	Acceptable
400-500	500-700	Marginal
More than 500	More than 700	Actionable level; the higher the
whole than 500	whole than 700	number, the worse the problem

Production/Manufacturing ^(1,2)	
TVOC Level ng/L (µg/m ³)	Meaning
Less than 500	Ideal
500-700	Good
700-1000	Acceptable
1000-1500	Marginal
More than 1500	Actionable level; employee complaints probable;
1500-3000	the higher the number, the worse the problem Exposure effects ⁽³⁾ possible
3000-25000	Exposure effects ⁽³⁾ probable
More than 25000	Toxic range, potential neurological effects

Notes:

- 1. These levels are applicable to normal individuals; they are not applicable to chemically sensitive individuals.
- 2. Specific production operations may exceed these levels due to the presence of one or more compounds characteristic of a specific operation. In those cases, it is recommended that OSHA or NIOSH limits be used for those individual compounds and that they not be included in the Total VOC value.
- 3. Exposure effects eye and respiratory irritation, headaches, drowsiness, nausea, general malaise, etc.

TVOC = [(As - Ab) x Ws / Ai] / Ls

 $\begin{array}{ll} \mbox{Where:} & \mbox{As}=C3\text{-}C15\ \mbox{TIC}\ (\mbox{Total Ion Chromatogram)}\ \mbox{area of the Sample}\\ & \mbox{Ab}=C3\text{-}C15\ \mbox{TIC}\ \mbox{area of the blank}\\ & \mbox{Ws}=\mbox{Weight of the internal standard}\ \mbox{added in ng}\\ & \mbox{Ai}=\ \mbox{TIC}\ \mbox{area of the internal standard}\ \mbox{padd}\ \mbox{added in ng}\\ & \mbox{Ai}=\ \mbox{TIC}\ \mbox{area of the internal standard}\ \mbox{padd}\ \mbox{added in ng}\\ & \mbox{Ai}=\ \mbox{TIC}\ \mbox{area of the internal standard}\ \mbox{padd}\ \mbox{padd}\ \mbox{added in ng}\\ & \mbox{Ai}=\ \mbox{TIC}\ \mbox{area of the internal standard}\ \mbox{padd}\ \mbox{padd}\ \mbox{padd}\ \mbox{added in ng}\\ & \mbox{Ai}=\ \mbox{Volume of the sample in L} \end{array}$

The levels listed in this table and the potential reactions described are based on work done by L. Molhave, (Volatile Organic Compounds, Indoor Air Quality and Health, Vol. 5, International Indoor Air Quality Conference, Toronto, Canada, 1990, p. 22 ff) and others as well as empirical information gained through interactions with many professionals who are active in the IAQ field. These levels should not, in any way, be construed as definitive. Liability for reliance on the data contained in the above tables is therefore disclaimed

This table was first published in the technical paper Fike, R. S., "VOCs," <u>Indoor Environment Connections,</u> Vol. 8, Issue 10, August, 2007, p. 37 ff.

TMVOC Interpretation

Normal Individuals		
TMVOC (ng/L)	Level	Explanation
< 6	Minimal	Actively growing mold may be present but is at or below levels found in many homes and working environments.
6-20	Low	Actively growing mold is present but is at a level which, generally, may only adversely affect individuals sensitive to molds.
20-60	Moderate	Actively growing mold is present; significant allergic reactions are possible.
60-100	Heavy	Very significant levels of actively growing mold are present; significant allergic reactions are very probable.
> 100	Severe	Very high levels of actively growing mold are present; immediate action should be taken.

Hypersensitive Individuals		
TMVOC (ng/L)	Level	Explanation
< 3	Minimal	Actively growing mold may be present but is at or below levels found in most homes and working environments.
3-10	Low	Actively growing mold is present but is at a level which, generally, may only adversely affect hypersensitive individuals.
10-20	Moderate	Actively growing mold is present; significant allergic reactions are possible.
20-30	Heavy	Very significant levels of actively growing mold are present; significant allergic reactions are very probable.
> 30	Severe	Very high levels of actively growing mold are present; immediate action should be taken.

This is an assessment of the quantity of actively growing mold in the building. This test will not detect inactive or dormant mold. Like TVOC, no federal or state agency has specified specific limits for TMVOC. Typically, if there is no plumbing leak or water intrusion into the building, there will not be a mold problem. If the presence of mold is indicated, the first step in fixing the problem is to find and eliminate the water source. Typical places to check are roof leaks, plumbing leaks, leaks under the windows, leaking appliances, and sweating fixtures.

The TMVOC ranges cited above and their interpretation are not absolute as many conditions affect the quantity of MVOCs detected. Therefore, it must be understood that these results are not definitive but are meant as a general guideline only.

Caution should always be exercised when removing mold and it is recommended that a professional mold remediator be consulted before any removal is initiated.

1

SPFScan Report

Analytical Technologies, L.L.C.

Fike

		Page 1 of 1	Thank you for	choosing
Sampled By:	S. Bear		-	
Location:	Your Location		Report Date:	02/28/2018
Project:	Your Project		Order Date:	02/26/2018
Client:	ABC Company		C.O.C. No.:	9999

	Page 1	of 1	Thank you for choosing
Client Sample ID:	Your Sample Name		ABC Company
Laboratory ID:	9999 - 1		123 Main Street
Date Sampled:	02/25/2018		Anywhere, USA 55512
Date Analyzed:	02/27 Volume:	40. L	555 555-1212

SPFScan is a very sensitive air test to check for the thermal degradation products of misapplied Spray Polyurethane Foam (SPF). It is not deisgned to detect properly applied SPF. People have a very wide difference in their ability to perceive these odors.

Fike Analytical Technologies, L.L.C., uses a number of proprietary chemical "marker" patterns to determine the presence of the thermal degradation products of misapplied SPF. The quantity and quality of those marker patterns are combined to generate a value for the probability that odors will be perceived in the area sampled. Any value greater than 20% is a positive indication that SPF has been misapplied. The reporting scale is a continuum from 0% to >100% with 100% being defined as the level nearly all persons will be able to smell the odor.

Probability Reported	Interpretation
< 2%	The odor of misapplied Spray Polyurethane Foam (SPF) may be present but is at a level that is imperceptible to most people.
2 - 10%	The odor of misapplied Spray Polyurethane Foam (SPF) is present at a level that may only be perceptible to persons sensitive to the smell.
10 - 20%	The odor of misapplied Spray Polyurethane Foam (SPF) is present at a level that may be perceptible to many people.
20 - 40%	The odor of misapplied Spray Polyurethane Foam (SPF) is present at a level that may be perceptible to most people.
40 - 100%	The odor of misapplied Spray Polyurethane Foam (SPF) is present at a level that is perceptible to nearly all people.
> 100%	These odor levels of misapplied Spray Polyurethan Foam (SPF) are "off scale" and may be found in places such as buildings where SPF has been applied less than one week priviously. They may also be found in buildings where the SPF installation has gone horribly wrong.

Probability that odor from misapplied SPF will be perceived: 60%

Note: Trying to cover up the odor from misapplied SPF using odorants is not effective. The odor will not go away over time. Reducing the odors can only be accomplished by removing the missapplied SPF and cleaning the area using a dry ice blast.

The results contained in this report are dependent upon a number of factors over which Fike Analytical Technologies, L.L.C. (Fike), has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, and/or the ability of the sampler to collect a proper or suitable sample. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Fike, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

1

SmokeScan Report

Analytical Technologies, L.L.C.

Fike

Client:	ABC Company
Project:	Live Oaks Condominiums
Location:	Anywhere, USA
Sampled By:	J. Cammel

C.O.C. No.: 23001 Order Date: 03/06/2015 Report Date: 03/10/2015

		Page 1 of 1	Thank you for choosing
Client Sample ID:	Unit 53-B		ABC Company
Laboratory ID:	23001 - 4		123 Main Street
Date Sampled:			Anywhere, USA 55512
Date Analyzed:	03/10	Volume: 39.7 L	555 555-1212

SmokeScan is a very sensitive air test to check for odors commonly referred to as "stale cigarette smoke" or "third hand smoke." It is also able to detect "fresh" cigarette smoke commonly referred to as "first" or "second hand" cigarette smoke. People have a very wide difference in their perception of the odor of residual or stale cigarette smoke.

Fike Analytical Technologies, L.L.C., uses a number of proprietary chemical "marker" patterns to determine the presence of residual or stale cigarette smoke. The quantity and quality of those marker patterns are combined to generate a value for the probability that residual or stale cigarette smoke will be perceived in the area sampled. Any value greater than 20% is a positive indication that tobacco smoke is present. The reporting scale is a continuum from 0% to >100% with 100% being defined as the level nearly all persons will be able to smell the odor. If active smoking is taking place during sampling, the results will be skewed toward the high end.

Probability that residual or stale cigarette smoke will be perceived: 37

Probability Reported	Interpretation			
< 20%	The odor of residual or stale cigarette smoke may be present but is at a level that is imperceptible to most people.			
20 - 40%	The odor of residual or stale cigarette smoke is present at levels that may only be perceptible to persons sensitive to the smell.			
40 - 60%	The odor of residual or stale cigarette smoke is present at a level that may be perceptible to many people.			
60 - 80%	The odor of residual or stale cigarette smoke is present at a level that may be perceptible to most people.			
80 - 100%	The odor of residual or stale cigarette smoke is present at a level that is perceptible to nearly all people.			
> 100%	These levels of residual or stale cigarette smoke odors are "off scale" and may be found in places such as homes of active, heavy smokers, in automobiles belonging to active, heavy smokers, in smoke shops, etc. or in the immediate vicinity of where smoking is actively taking place.			

Note: Trying to cover up the smell of residual or stale cigarette smoke using odorants is not effective. Reducing the odors can only be accomplished by cleansing the area.

The results contained in this report are dependent upon a number of factors over which Fike Analytical Technologies, L.L.C. (Fike), has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, and/or the age of stale cigarette smoke deposits. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Fike, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

1

FireScan Report

Analytical Technologies, L.L.C.

Fike

		Dere 1 of 1	Thank you for	choosing
Sampled By:	S. Bear		-	
Location:	Your Location		Report Date:	02/28/2018
Project:	Your Project		Order Date:	02/26/2018
Client:	ABC Company		C.O.C. No.:	9999

	Page 1	of 1	Thank you for choosing
Client Sample ID:	Your Sample Name		ABC Company
Laboratory ID:	9999 - 1		123 Main Street
Date Sampled:	02/25/2018		Anywhere, USA 55512
Date Analyzed:	02/27 Volume:	40. L	555 555-1212

FireScan is a very sensitive air test to check for residual odors typically resulting from previous fires and smoke. People have a very wide difference in their ability to perceive these residual odors.

Fike Analytical Technologies, L.L.C., uses a number of proprietary chemical "marker" patterns to determine the presence of residual fire and smoke odors. The quantity and quality of those marker patterns are combined to generate a value for the probability that residual fire and smoke odors will be perceived in the area sampled. Any value greater than 20% is a positive indication that fire and smoke odors are present. The reporting scale is a continuum from 0% to >100% with 100% being defined as the level nearly all persons will be able to smell the odor. If an active fire is taking place during sampling, the results will be skewed toward the high end.

Probability that residual fire or smoke odors will be perceived: 20%

Probability Reported	Interpretation
< 2%	The odor of residual fire or smoke may be present but is at a level that is imperceptible to most people.
2 - 10%	The odor of residual fire or smoke is present at a level that may only be perceptible to persons sensitive to the smell.
10 - 20%	The odor of residual fire or smoke is present at a level that may be perceptible to many people.
20 - 40%	The odor of residual fire or smoke is present at a level that may be perceptible to most people.
40 - 100%	The odor of residual fire or smoke is present at a level that is perceptible to nearly all people.
> 100%	These levels of residual fire or smoke odors are "off scale" and may be found in places such as buildings where a fire is actively smoldering or burning, where a poorly drafted fireplace is burning, or where the combustion of tobacco products is actively taking place.

Note: Trying to cover up residual fire or smoke odors using odorants is not effective. Reducing the odors can only be accomplished by cleansing, replacing, or sealing the source.

The results contained in this report are dependent upon a number of factors over which Fike Analytical Technologies, L.L.C. (Fike), has no control, which may include, but are not limited to, the sampling technique utilized, the size or source of sample, the ability of the sampler to collect a proper or suitable sample, and/or the age of stale cigarette smoke deposits. Therefore, the opinions contained in this report may be invalid and cannot be considered or construed as definitive and neither Fike, nor its agents, officers, directors, employees, or successors shall be liable for any claims, actions, causes of action, costs, loss of service, medical or other expenses or any compensation whatsoever which may now or hereafter occur or accrue based upon the information or opinions contained herein.

Aged Feline Urine Index Interpretation

	Normal Individuals						
Index Value	Level	Explanation					
<0.1		No aged feline urine detected					
>0.1-1	Low	Aged feline urine detected but is at a level which will not typically be perceived					
1-3	Moderate	Aged feline urine detected but is at a level which will only be perceived by those sensitive to the odors					
3-8	Heavy	Aged feline urine detected and is at a level which will be perceived by most people and offensive to some					
8-12	Severe	Aged feline urine detected and is at a level which will be offensive to most people and highly offensive to some					
12-16	Critical	Aged feline urine is detected and is at a level which demands immediate remediation Health risk may be present					
>16	Extreme	Entry into the area requires PPE					

February, 2018

This is an assessment of the quantity of aged feline urine present. This test will not detect "fresh" feline urine. No federal or state agency has specified specific limits for FUI. The index levels apply to "normal" individuals. Hypersensitive individuals may be affected more severely.

The FUI ranges cited above and their interpretation are not absolute as many conditions may affect the value of FUI. Therefore, it must be understood that these results are not definitive but are meant as a general guideline only.

No level of safety risk is implied by this index. Caution should always be exercised when entering an area contaminated with feline urine. Caution should always be exercised when handling or removing material contaminated with feline urine. It is recommended that a professional remediator be consulted before any removal or remediation is initiated.

How do I Read a Fike Analytical AirSurvey Report? or ''Fike-Speak''

To understand what a Fike Analytical AirSurvey report means you must be able to read it in the first place. This article is a compilation of headings and their meanings along with frequently asked questions to help understand the Fike-Speak we use in our reports.

Analysis name

This defines the scope of the analysis and applicable sections of List of Compounds or other documents that may apply.

Units

The unit used most often is ng/L ($ng/L = \mu g/m^3$); however, other units may be used.

Paragraph under banner

This statement tells the submitter what compounds were evaluated in the analysis. AirSurvey analyses involve investigations of compounds listed in the List of Compounds. Only those compounds that were detected are listed in the report. A copy of the List of Compounds accompanies each report.

Laboratory ID

This is the number under which all laboratory records are stored. If you call to discuss your results, it would be helpful to give this number to the person who answers the phone before you ask for the technical department.

Detection limits

The detection limit is determined by the volume of air sampled and by the total quantity of VOCs present. For samples that have massive quantities of analytes, many lower level compounds will be masked. It is usually best to address the source for the high level compounds and then resample to uncover other potential problems.

Compound

This column lists the most common name for the compound. While it may be a trivial name (such as "Toluene") it is usually an IUPAC name. IUPAC stands for International Union of Pure and Applied Chemistry. This organization has established a system of nomenclature for chemicals that is universally accepted. Other names for the compound may also be included under the "Comments" section. Where a compound is listed that is not specifically identified (such as C4-C6 Hydrocarbon) an indication of functionality (i.e. aldehyde, alcohol, ketone, etc.) is often included under the "Comments" section.

What does Cx mean?

Where Cx is listed separately, such as C6, C7, C8, etc., it indicates the specific, straight chain hydrocarbon (n-hexane, n-heptane, n-octane, etc.). This nomenclature is used for brevity and clarity (C14 is shorter to write and is easier to understand than n-tetradecane). Where Cx is used in a range, such as C6-C8 Hydrocarbon, it indicates all of the C6, C7, and C8 hydrocarbons within that range.

Calculated Result

If a compound is determined quantitatively, that is to say, there is an established calibration curve for the compound (this is true for all Quantitative List compounds in the List of Compounds), no number will be listed in this column. A number appears in this column only if the compound listed is determined semiquantitatively. An estimate of the concentration of semiquantitative compounds is made by taking a ratio of its chromatographic peak area to the area of the internal standards. Calculated values can be used quantitatively to determine the ratios between samples. For example, if Sample A has a calculated value for a specific compound of 400 and Sample B has a calculated value for the same compound of 800, it can be said, quantitatively, that Sample B has twice as much of that compound as Sample A. However, the number cannot be used quantitatively as a stand-alone value. Since the objective for taking an AirSurvey sample is usually to discover what compounds are present and estimate their concentrations in an effort to determine potential problems and sources, the accuracy of the values listed under "Calculated Result" are sufficient. Should more accurate values be required, a calibration curve can be established and additional samples analyzed.

Actual Result

If a compound is determined quantitatively, a single number is listed in this column. The value can be substantiated through the calibration curve and applicable quality control procedures. If a compound is determined semiquantitatively, a single number is listed under "Calculated Result" and a range is listed under "Actual Result". This range is typically 50% to 200% of the calculated value. Within one standard deviation, the actual concentration will fall within these limits.

Comments

If the entry under Compound is not a specific chemical (such as "substituted benzene" or C4-C6 Hydrocarbon), the first line in Comments column will include the retention time together with as much supporting information about the compound as possible. The retention time is listed to facilitate correlation between samples. For example, if the chemical listed under Compound is "C4-C6 Hydrocarbon", using the retention time, it is possible to match the compound to a "C4-C6 Hydrocarbon" listed for another sample. This is especially useful in cases where multiple hydrocarbons are listed.

If the entry under Compound is a specific chemical, the first line in this column lists other names for the compound. Where the name listed under Compound is a trivial name, like "toluene", the Column will indicate the IUPAC name "methylbenzene". Where the name listed under Compound is an IUPAC name like "isopropylbenzene", the Comments column will indicate the trivial name "cumene". Additional comments may also be included. In the case of some odorants, the nature of the odorant may be listed, for example, "sweet pine", "rose", or "tangerine".

If the entry under Compound is not a specific chemical, no information is listed in the bottom line under Comments. If the entry under Compound is a specific chemical, the bottom line lists the following:

ppb: This is parts per billion on a volume basis. This is a number calculated from the ng/L value listed under Actual Result (for quantitative compounds) or Calculated Result (for semiquantitative compounds) using the formula:

ppb = ng/L X (24.04 / MW)

where: MW = the molecular weight of the compound and 24.04 = 22.4 X (293 / 273)

where: 22.4 is the volume of one mole of ideal gas at 273 °K (0 °C) and 293 is the assumed sampling temperature in °K.

This formula assumes a sampling temperature of 20 °C (68 °F). Some organizations prefer to use 25 °C (77 °F) as the assumed sampling temperature which will change the 24.04 factor to 24.45.

- **MW:** This is the mass spectral molecular weight of the compound. The mass spectral molecular weight is a whole number based on the sum of the weights of the most abundant isotopes of the atoms present. For example, benzene has a mass spectral molecular weight of 78 rather than the actual molecular weight of 78.11.
- **CAS:** The Chemical Abstract Service assigns a unique number to all chemicals. This number is particularly useful in eliminating confusion in communicating the identity of the compound and in performing web searches.

Validity of Compound Identification

To determine the identity of each compound, the analyst will use various computerized search algorithms, his knowledge and skill in mass spectral interpretation, and his experience in the details and quirks of GC-MS analysis. The operator must be at least 95% confident in the validity of an identification before it will be listed specifically by name under "Compound" in an AirSurvey analysis. Where there is uncertainty in the validity of the identity of a compound, that level of uncertainty is written in standardized format and is provided to the submitter as part of the analytical report.

Fike Analytical is a consultative Air Testing Laboratory. We always welcome your questions and comments to help us learn new ways to serve you better.

Fike Analytical Technologies, L.L.C. 248-241-6713 randall@reagan.com

Fike Analytical Technologies, L.L.C. 9800 Reese Clarkston, MI 48348

Fike Analytical Technologies, L.L.C. ~ 9800 Reese Rd. ~ Clarkston, MI 48348 ~ 248-241-6713

WHAT ARE THE DIFFERENCES BETWEEN CANISTERS AND THERMAL DESORPTION TUBES?

Thermal Desorption Tubes	Canisters				
Sample size analyzed = up to 40 L	Sample size analyzed = $0.1-1.0$ L				
Sample pump required; sampling rate	Sampling tree and critical orifice required;				
adjustable on site	cannot be adjusted				
UPS shipping for 6 thermal desorption	UPS shipping for six 6L canisters round				
tubes round trip Chicago – Los Angeles:	trip Chicago – Los Angeles:				
Ground \$15	Ground \$150				
2 nd Day Air \$75	2 nd Day Air \$540				
Next Day Air \$133	Next Day Air \$680				
No cost to clean/certify thermal desorption tubes	Have to pay for cleaning and certification				
50 thermal desorption tubes fit neatly into a brief case	You need a really big brief case				
Analysis cost is lower	Analysis cost is more expensive				
Keep several thermal desorption tubes for a	Keep several canisters/regulators for a year				
year and you don't have to pay rent	and the rent will drive you out of business				
One-Year shelf life	< 30 days shelf life				
Convenient (can keep several tubes in your	Hassle (have to order for each job, large				
briefcase so they're always available, easy	shipping containers, difficult to haul				
to haul around, ship in a 9"x4"x4" box)	around just in case you need one)				
Thermal desorption tubes are up to 400	The struggle to gain sensitivity makes				
times more sensitive	analyses prone to contamination problems				
Can do compounds like nicotine, cresols,					
naphthalene, 2-methylnaphthalene, cedrol,					
menthol, 4-PCH, fragrances, acetophenone,	Limited to C \leq 10 compounds				
camphor, methylsalicylate, geraniol, tri-					
chlorobenzene, citronellyl esters, C11-C15					
All of the 400 thermal desorption	Only 213 out of the 400 thermal desorption				
compounds can be determined	compounds can be determined				
It's easy to make last minute changes in	You need to order a different critical orifice				
sampling parameters	to make last minute changes in sampling				
	parameters				
Sulfur, nitrogen, and polar compounds can	Difficulty determining sulfur, nitrogen, and				
be determined easily	polar compounds				
Grab sample can be taken in 0.5-5 min	Grab sample can be taken in 0.2 min				
\$30 for sample taken and not analyzed	\$75 for sample taken and not analyzed				

COC: 4059

Note that there is no distinction between quantitative and semiquantitative results.

Note that the prefix and the compound name are in two separate columns for easy sorting.

No restrictions have been placed on this file so that the user has total freedom to manipulate the data. Because of this and the fact that, once sent, Fike Analytical has no control over the data, Fike Analytical assumes no responsibility for the accuracy of this data. Fike Analytical's official results are sent only in the normal report format.

COC	SN	DATE	PREFIX	COMPOUND	CALC	ACTUAL	RT	PPB	MW	CAS No.
4059	1	11/17/2017		Total VOCs		680				
4059	2	11/17/2017		Total VOCs		790				
4059	3	11/17/2017		Total VOCs		310				
4059	4	11/17/2017		Total VOCs		1,100				
						,				
4059	1	11/17/2017		C 5		51		17	72	109-66-0
4059	2	11/17/2017		C 5		81		27	72	109-66-0
4059	3	11/17/2017		C 5		16		5.3	72	109-66-0
4059	4	11/17/2017		C 5		100		33	72	109-66-0
4057		11/1//2017		0.5		100		55	12	109 00 0
4059	1	11/17/2017		C 6		5.3		1.5	86	110-54-3
4059	2	11/17/2017		C 6		11		3.1	86	110-54-3
4059	3	11/17/2017		C 6		2.9		0.8	86	110-54-3
4059	4	11/17/2017		C 6		14		3.9	86	110-54-3
4039	4	11/1//2017		0		14		5.9	00	110-34-3
4059	1	11/17/2017	1,1-	Dishlarannanan		1.7		0.4	110	563-58-6
	1			Dichloropropene						
4059	2	11/17/2017	1,1-	Dichloropropene		2.7		0.6	110	563-58-6
4059	3	11/17/2017	1,1-	Dichloropropene		0.8		0.2	110	563-58-6
4059	4	11/17/2017	1,1-	Dichloropropene		4.0		0.9	110	563-58-6
40.50	-	11/17/2017	├ ───┤			1.0		0.6	70	71.40.0
4059	1	11/17/2017	├ ───┤	Benzene		1.9		0.6	78	71-43-2
4059	2	11/17/2017	ļ	Benzene		2.7		0.8	78	71-43-2
4059	3	11/17/2017		Benzene		1.0		0.3	78	71-43-2
4059	4	11/17/2017		Benzene		4.2		1.3	78	71-43-2
4059	1	11/17/2017		Toluene		20		5.2	92	108-88-3
4059	2	11/17/2017		Toluene		21		5.5	92	108-88-3
4059	3	11/17/2017		Toluene		8.0		2.1	92	108-88-3
4059	4	11/17/2017		Toluene		48		13	92	108-88-3
4059	1	11/17/2017	1,1,1,2-	Tetrachloroethane		3.0		0.4	166	630-20-6
4059	2	11/17/2017	1,1,1,2-	Tetrachloroethane		3.8		0.6	166	630-20-6
4059	3	11/17/2017	1,1,1,2-	Tetrachloroethane		2.0		0.3	166	630-20-6
4059	4	11/17/2017	1,1,1,2-	Tetrachloroethane		0.7		0.1	166	630-20-6
4059	1	11/17/2017	m,p-	Xylene		30		6.8	106	106-42-3
4059	2	11/17/2017	m,p-	Xylene		32		7.3	106	106-42-3
4059	3	11/17/2017	m,p-	Xylene		17		3.9	106	106-42-3
4059	4	11/17/2017	m,p-	Xylene		47		11	106	106-42-3
4059	1	11/17/2017	1,2,4-	Trimethylbenzene		6.4		1.3	120	95-63-6
4059	2	11/17/2017	1,2,4-	Trimethylbenzene		6.2		1.2	120	95-63-6
4059	3	11/17/2017	1,2,4-	Trimethylbenzene		3.3		0.7	120	95-63-6
4059	4	11/17/2017	1,2,4-	Trimethylbenzene		20		4.0	120	95-63-6
				ž		T				1
4059	2	11/17/2017	p-	Isopropyltoluene		1.0		0.2	134	99-87-6
4059	4	11/17/2017	p-	Isopropyltoluene		0.9		0.2	134	99-87-6
										1
4059	1	11/17/2017		Naphthalene		1.1		0.2	128	91-20-3
4059	2	11/17/2017		Naphthalene		0.9		0.2	128	91-20-3
4059	3	11/17/2017		Naphthalene		0.7		0.1	128	91-20-3
4059	4	11/17/2017	<u> </u>	Naphthalene		2.6		0.5	128	91-20-3
			† †	- up initiatione						
4059	1	11/17/2017	<u> </u>	Dimethylsulfide	0.03	0.01-0.06		0.01	62	75-18-3
4059	2	11/17/2017	<u> </u>	Dimethylsulfide	0.02	0.01-0.04		0.008	62	75-18-3
4059	3	11/17/2017	<u> </u>	Dimethylsulfide	0.02	0.01-0.06		0.000	62	75-18-3
4059	4	11/17/2017	<u> </u>	Dimethylsulfide	0.03	0.01-0.04	1	0.007	62	75-18-3
4007	т	11/1//2017	1	Dimethylsunde	0.02	0.01-0.04		0.007	02	,5 10 5

Price List for Services Available From Fike Analytical Technologies

I TICE LISt IOI SEI	vices Available From Fike Analytical 1	echnologies	
Analysis/Service	Description	Price	
	TDT air sample; GC-MS determination of 60	\$385 stand-alone	
AirSurvey	compounds quantitatively and 500+ compounds	\$305 as add-on	
	semiquantitatively	or post facto	
	· · · · · · · · ·	\$160 stand-alone	
IAQ Summary	TDT air sample; TVOC and TMVOC (post facto	\$80 as add-on or	
	analysis is available for SmokeScan and AirSurvey)	post facto	
	TDT air sample; determination of specific	\$145 + \$15 per	
Compound Specific	compound(s) specified by the submitter	compound	
		\$80 as add-on	
TMVOC	Total Mold Volatile Organic Compounds	or post facto	
		\$160 stand-alone	
FUI	Aged Feline Urine – Index	\$80 as add-on or	
101	riged i ennie ennie i nidek	post facto	
		\$160 stand-alone	
SmokeScan	Active and stale tobacco smoke – Index	\$80 as add-on or	
SillokeSeall	Active and state tobacco smoke midex	post facto	
		\$160 stand-alone	
FireScan	Residual odors from fires - Index	\$80 as add-on or	
Thesean	Residual odors from files - fildex		
	Thermal deepedation VOCa from improvements	post facto \$160 stand-alone	
CDECast	Thermal degradation VOCs from improperly		
SPFScan	installed Spray Polyurethane Foam (SPF); does not	\$80 as add-on or	
	detect properly installed SPF – Index	post facto	
	Performed at the off gas conditions specified by the	\$50 Sample Prep	
Material Off Gas	submitter. Sample prep includes 1-hr incubation	Analysis costs	
	time.	same as above	
Consulting relating to	Consultation on project planning and data		
above analyses	interpretation (see below for consulting charges	No charge	
	related to work outside of this scope)		
Sampling Media	Trimatrix thermal desorption tube (refunded upon	\$30	
Sumpting mount	return for analysis)		
		article Evaluation	
	Scanning Electron Microscope – Energy Dispersive		
SEM-EDX	X-Ray Spectrometer analysis of particulate or other	Call for Quote	
	samples amenable to SEM scrutiny		
	nd Custom Work		
Consulting, Non-Legal	Consulting beyond that normally provided in support	\$170/hr plus	
Work	of analytical reports; includes meeting with end	expenses	
W OIK	clients, report writing/review, and on site visitation	CAPCIISES	
	Assistance in legal report writing, in-depth data		
Consulting, Legal Work	evaluation, meeting with end users; assistance in	\$270/hr plus	
Consuming, Legar WOIK	legal work including testimony, depositions, writing		
	legal documents, and consultation with attorneys		
Custom Analytical Wart-	Lab-scale process simulation; custom analytical setup	Call for Oract	
Custom Analytical Work	and testing; design of custom monitoring protocol	Call for Quote	
	- * *		

Fike Analytical Technologies, L.L.C. 9800 Reese Clarkston, MI 48348

Fike Analytical Technologies, L.L.C.

Fike Analytical Technologies, L.L.C. 248-241-6713 randall@reagan.com

Rush turnaround multipliers: same day evenings and weekends 4X; same day working hours 3X; 24 hr 2X; 48 hr 1.75X

Prices are effective February, 2018. Prices are subject to change without notice.